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Predicting  outcomes  is  a critical  ability  of  humans  and  animals.  The  dopamine  reward  prediction  error
hypothesis,  the  driving  force  behind  the recent  progress  in  neural  “value-based”  decision  making,  states
that dopamine  activity  encodes  the  signals  for  learning  in order  to  predict  a reward,  that  is,  the  difference
between  the  actual  and  predicted  reward,  called  the  reward  prediction  error.  However,  this  hypothesis
and  its  underlying  assumptions  limit  the  prediction  and  its  error as reactively  triggered  by  momentary
environmental  events.  Reviewing  the  assumptions  and  some  of  the  latest  findings,  we  suggest  that  the
eward
opamine
einforcement learning
ecision
alue

internal  state  representation  is learned  to  reflect  the  environmental  reward  structure,  and  we  propose
a new  hypothesis  – the  dopamine  reward  structural  learning  hypothesis  – in  which  dopamine  activity
encodes  multiplex  signals  for  learning  in order  to  represent  reward  structure  in the  internal  state,  leading
to better  reward  prediction.

© 2012  Elsevier  Ireland  Ltd  and  the  Japan  Neuroscience  Society.  All  rights  reserved.
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. Introduction

Outcome prediction, along with action selection based on the
rediction, underlies motivated and reward-oriented behavior or
alue-based decision making (Hikosaka et al., 2006; Montague
t al., 2006; Rangel et al., 2008; Schultz, 1998). To maximize the
ain of outcomes, one should make value-based decisions, not only
iming for the immediate outcome but rather making a balance
f outcome predictions between the immediate and temporally
istant future. One should also be able to learn appropriate value-
ased decisions through experience in order to behave adaptively
o different circumstances. Finally, one should generate decisions
ased on the information that is represented in the input (state
epresentation), and this final aspect is the focus of this arti-
le.

The reinforcement learning (RL) framework, and temporal dif-
erence (TD) learning in particular, can offer a quantitative solution
or this balancing and learning. This characteristic has made the
heory influential in the recent expansion in our understanding of

he value-based decision making process and the underlying neu-
al mechanisms (Montague et al., 1996; Schultz et al., 1997). RL was
riginally developed in mathematical psychology and operation
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research (Sutton and Barto, 1990) and remains an active research
area in computer science and machine learning (Sutton and Barto,
1998). The intrinsic strength of RL theory is its clear formulation
of the issues mentioned above, which can stand on its own  with
its mathematically defined elements, even without a relationship
to any physical entities. However, it is not its intrinsic strength but
its clear set of assumptions that made RL influential in the field of
neural value-based decision making. These assumptions made it
possible to map  between the well-defined elements of RL and the
underlying neural substrates, thereby allowing us to understand
the functions of neural activity and the roles of neural circuits under
this theory. A marked example is an ingenious hypothesis about
dopamine phasic activity as a learning signal for TD learning (called
TD error), which is the strongest example of mapping to date, and is
thus a critical driving force behind the progress in this field (Barto,
1994; Houk et al., 1994; Montague et al., 1996; Schultz et al., 1997).

The latest findings from the vanguard of this field, however, have
begun to suggest the need for a critical revision of the theory, which
is related to the underlying assumptions that map  RL to neural sub-
strates and requires a reconsideration of state representation. After
providing a brief sketch of RL theory and its assumptions, we first
clarify the reward prediction and error of the hypothesis. Using
experimental and computational findings on dopamine activity as

a primary example, we  discuss that the prediction and associated
action selection can be significantly enhanced if the structure of
rewards are encoded in the state representation for those functions.
We propose a new hypothesis in which dopamine activity encodes

ociety. All rights reserved.
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ultiplexed learning signals, representing reward structure and
eading to improved reward prediction.

. Background: the reinforcement learning framework

To understand the intrinsic strength of RL, or TD learning, it
s useful to first present its mathematical ingredients (Sutton and
arto, 1998) but in an intuitive manner and separately from the
ssumptions used to map  RL to neural substrates. In the TD frame-
ork, an abstract entity is first considered that receives an input

nd then produces an output; this input–output pair causes a tran-
ition to the next input, deterministically or probabilistically, and
he entity produces an output when given the next input, so that
he process continues. Importantly, at each transition, the entity
eceives a real number, or a numeric, which the entity prefers to be
arger. The entity’s primary interest is to balance, improve, and ide-
lly maximize the gain of the numeric over the transitions. These
re the key concepts of the framework, which can be defined as
efinite mathematical notions once their definitions, assumptions,
nd constraints are refined, which we do not attempt here.

The numeric prediction construct and its learning signal are at
he heart of the formulation, and they are called the value function
nd TD error, respectively. The value function defines a solution
or the balancing problem, while TD error provides a means for
earning ability. The value function solves the balancing problem
y summing the numeric over the transitions with the so-called
iscount factor and thereby discounting the future numeric more
trongly; the value of an input, ei, is given by V(ei) = ri + �ri+1 +
2ri+2 + . . .,  where rj refers to the numeric in transition at input
j and � is the discount factor, where 0 ≤ � ≤ 1. Even if the value
unction is defined as such, its actual value is unknown, and it
s thus learned in the framework as an approximate value. This
earning takes advantage of the function’s specific form; once it is
erformed well, V(ei) = ri + �V(ei+1) should hold on average, and

t is thus not well established if both ends of the equation differ.
herefore, it uses the difference as a learning signal or TD error,
(ei) = ri + �V(ei+1) − V(ei), as the name indicates (i.e., the tempo-
al difference of values between two consecutive inputs). It adjusts
he value in the same direction as the error (either positively or neg-
tively) and also proportional to the magnitude of the error. Using
D error, the entity similarly solves another important issue: learn-
ng about output selection or which output to choose with an input.
lthough there are other types, the formulation sketched here is

he most basic type used to solve numeric prediction and output
election in parallel by learning. The majority of studies adopt a
inear form for the two functions, which we also follow. By way
f an example, the linear-form value function is a multiplication
f a vector representation of a given input with a weight vector,
nd it is improved during learning by changing the weight vector
n reference to the input vector.

A simple example of this formulation is that the entity can be
egarded as an agent (human or animal) in an environment. The
nput is a state of the environment and is thus called state; the
utput is a way for the agent to influence the environment and is
hus called action; and the output selection is called action selec-
ion. The numeric is an affectively important outcome of the agent,
uch as reward, and the value function corresponds to reward pre-
iction. Although this example is certainly useful, as it is a major
rigin of the formulation and often used in the literature (as it is
elow), understanding the abstract notion is crucial (Sutton and
arto, 1998). In particular, this example is misleading if it is taken

o imply that the TD learning framework demands that the entity

ust be a “whole” agent, so that the state of the environment must
e the input to the entity. Instead, the abstract notion defines only
hat a given entity should implement functions of TD learning, or
ce Research 74 (2012) 177–183

the reward prediction and action selection, given its inputs. Specif-
ically, an entity can be a part of the agent; when considering that
TD learning is a part of brain function, it is more appropriate to
consider that the entity is a functional part of the brain, so that the
input to the entity should be based not only on the input from the
environment, but also on the information generated internally in
the brain (Singh et al., 2005).

3. Versatility and limitations of the reward prediction error
hypothesis

The hypothesis that dopamine (DA) phasic activity corresponds
to TD error, called the reward prediction error hypothesis, has facil-
itated transparent mapping between the computational notions
of TD and the underlying neural substrates (Barto, 1994; Houk
et al., 1994; Montague et al., 1996; Schultz et al., 1997). This trans-
parent mapping has helped to drive the field’s progress since the
proposal of this hypothesis, and it has been observed as the cor-
respondence between “canonical” DA responses and the TD error
of the hypothesis (Schultz et al., 1997). DA exhibits phasic activ-
ity in response to the delivery of an unexpected reward. Once the
pair of a reward-predicting cue (CS) and reward (US) has been pre-
sented with sufficient repetition (as in a Pavlovian conditioning
task), DA displays phasic activity to the CS but ceases to respond
to the US; if the US is omitted, DA demonstrates a suppressive
response at the time of US omission. Furthermore, several other
notable characteristics of DA have made the hypothesis more plau-
sible and attractive (Schultz, 1998), only a few of which are now
mentioned. DA is known to act as a modulator of synaptic plasticity,
thus being attractive as a learning signal (Reynolds and Wickens,
2002). A major proportion of DA neurons originating from the mid-
brain, especially the ventral tegmental area (VTA) and substantia
nigra pars compacta (SNc), have massive, diffuse projections not
only to the basal ganglia (e.g., striatum and nucleus accumbens)
but also to the overall cerebral cortex; such a projection pattern
seems ideal to concordantly modulate the functions of different
areas in TD learning. Given the available experimental evidence
when the hypothesis was  proposed, DA phasic activity was con-
sidered to be largely homogeneous in the VTA and SNc, except for
some minor variability in the responses (“noisy” responses). Thus,
assigning an important, single role to DA made sense, and TD error
is quite attractive as a unifying theory, especially given the well-
documented but still sought-after roles of DA in motivated and
addictive behaviors.

Two assumptions of the hypothesis enabled transparent map-
ping for clarity (Schultz et al., 1997). The first is a state assumption.
The hypothesis practically uses the agent-environment example,
described in the previous section, as the basis for its construction.
Accordingly, the state is taken to be the equivalent of a momentary
external event or the event’s sensory input to the agent (Fig. 1A); in
the CS–US case described above, the CS itself is a state. The second is
a time assumption. In the original, mathematical setting, although
there are transitions between the inputs, they are, in principle, not
related to the physical passage of time (Nakahara and Kaveri, 2010);
however, in the real world, there are often intervals between exter-
nal events. For example, after the brief presentation of a CS, a time
delay may  occur before the next clear external event or US. In the
hypothesis, time is divided into small constant time bins (e.g., 200-
ms bins) and each bin corresponds to each state. For bins with clear
external events, the states correspond to the events. For bins with
no external events, state representations are filled in, which are

assumed to be generated by the most recent past event as a time
trace (called stimulus-time compound representation) (Sutton and
Barto, 1990). For example, it is the time assumption that allows the
TD error of the hypothesis to indicate a suppressive response to
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Fig. 1. (A) Reward prediction learning according to the reward prediction error
hypothesis. Dopamine (DA) activity encodes the reward prediction error, which
is  the difference between the actual reward (red arrow) and the predicted reward
that  is expected based on momentary external event information (black arrow), and
then contributes to learning in reward prediction and action selection (indicated by
the  dashed line intersecting the external state inputs to the two  functions). Under
the  reward prediction error hypothesis, DA activity is considered to encode a spe-
cific reward prediction error signal ı(ei) = ri + �V(ei+1) − V(ei) wherein the input
ej is equivalent to external events (or their time traces), say Ei , and then ei = Ei in
the  hypothesis. (B) Schematic of a new hypothesis, the reward structural learning
hypothesis. With input reflecting the structure of the rewards (blue arrow toward
DA),  DA activity encodes multiplexed learning signals: signals for learning to rep-
resent the reward structure in the internal state (gray dashed arrow) and improved
reward prediction error signals, i.e., signals for learning better reward prediction
and action selection (black dashed arrow). Here, “internal state” in the figure refers
to  the neural, internal representation acquired by the reward structural learning,
which is then used as input to generate reward prediction and action selection.
Under the reward structural learning hypothesis, DA activity may  encode two types
of  signals. One type of signal is a reward prediction error signal (mostly in the
black dashed arrow but possibly also in the gray dashed arrow). The input ej for
ı(ei) = ri + �V(ei+1) − V(ei) is not necessarily Ei if, say, si (i.e., ei=si); si is learned
to  better reflect reward structure, e.g., taking account of past and future events,
actions and outcomes. The other type of signal facilitates the learning of si (in the
gray dashed arrow). For example, a variety of DA signals discussed in the text, e.g.,
“salient”, “alerting”, “initiating”, “uncertainty”, “information-seeking”, and “history-
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ependent” signals, could underlie this type of learning signal. (For interpretation of
he references to color in this figure legend, the reader is referred to the web version
f  the article.)

n unexpected reward omission (as the TD error of the bin changes
ith no reward occurrence), similarly to the canonical DA response

n that case.
Together with these assumptions, the overall setting of the TD

earning framework, reviewed in the previous section, determines
he two crucial characteristics of reward prediction and its error
ostulated by the hypothesis (Fig. 1A). First, the prediction and
rror are produced reactively to external events. In essence, exter-
al events are the states of the TD in the hypothesis. Therefore, the
eward prediction of the hypothesis depends directly on the most
ecent external event, or indirectly via a time trace triggered by the
vent (before the next external event happens). As both reward
rediction and action selection are computed as soon as the state
rrives (e.g., multiplication between the state and weight vectors
n the linear form), their outputs are produced reactively to the

omentary external event (or the momentary time trace of the
vent). The TD error of the hypothesis is also produced reactively to
uch states because it is computed by using the actual outcome and
he values of the “current” and “next” states only after observing

he “next” state.

Second, the predictive nature of reward prediction and error
and also action selection) is limited in a specific way under the
ypothesis. Generally, in TD learning, while reward prediction and
ce Research 74 (2012) 177–183 179

action selection acquire a predictive nature via learning with TD
error, TD error sets a limit on the prospective information that
reward prediction and action selection can access during learning,
and the predictive nature of TD error comes from being generated
as the temporal difference of reward predictions or value function
that is defined to sum outcomes over transitions. As the hypothesis
assumes external events to be states of the TD, the state represen-
tation limits the information available as only that contained in
the momentary external event (or momentary time trace). Conse-
quently, the reward prediction of the hypothesis could be learned
and generated to an extent that is based on the information pro-
vided by the momentary external event, accordingly inducing a
specific TD error.

Thus, the essential elements of the hypothesis include the fact
that the states are external events, and the corresponding reward
prediction and error. These are frequently regarded in the field as a
default value-based decision-making process. Under the hypothe-
sis, DA activity is the specific reward prediction error, i.e., the signal
for learning the reward prediction of the default process. Moreover,
in the literature, further neural functions are often investigated or
discussed as additional components to the default process.

Therefore, the proposition that DA activity encodes the error of
the default process needs to be critically examined. As the default
process is defined by the choice of the states as external events,
a representational question is central to this examination. The
reward prediction error hypothesis practically abandons this ques-
tion, as it equates momentary external events (or their time traces)
with “internal state representation”, which serves as input for gen-
erating reward prediction and action selection (Fig. 1A).

4. Reward structure useful for prediction: does dopamine
activity reflect reward structure?

Do DA neurons really encode the specific reward prediction
error (the specific TD error) of the reward prediction error hypoth-
esis? In fact, we  found that DA activity can encode the reward
prediction error better than the specific error of the hypothesis
(Nakahara et al., 2004). Critically, this prediction error encoded
by DA activity is the error that could be generated only when the
structure of rewards was  acquired in internal state representation.

The study aimed to address whether DA activity, a putative
reward prediction error signal, could access information beyond
that of momentary external events (or their time traces). In the
study, an instructed saccade task was used in which correct
saccades to instructed cues were accompanied with different out-
comes (in short, reward or no reward). A pseudo-random procedure
was used to determine a sequence of task trials; the rewarded and
non-rewarded cues were randomly permuted within each sub-
block of trials so that the pre-determined, average probability of
the rewarded and non-rewarded cues was maintained within a pre-
fixed number of trials, or a block of trials. This procedure induced
a reward probability that was  embedded in the past sequence of
outcomes over trials. This history-dependent reward probability
changed over trials, and it was a more precise measure for the
prediction of coming cues (or outcomes) in the next trial than the
average reward probability. The reward prediction and TD error by
the reward prediction error hypothesis would correspond to those
produced using the average reward probability. On the contrary, we
found that the phasic response of DA to the instruction cue matched
the TD error using the history-dependent reward probability, which
could be modeled by adding the representation of the sequential

reward structure as internal states to the TD learning framework.
The DA response emerged only after extensive experience with
the task. Additionally, the findings were somewhat concordant
with the findings of other studies (Bayer and Glimcher, 2005;
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romberg-Martin et al., 2010b; Enomoto et al., 2011; Satoh et al.,
003). Overall, they demonstrated that DA activity can encode a
etter TD error, as if an appropriate state representation is acquired
eyond the external events and then used for reward prediction.

Indeed, similarly to the case described above, reward predic-
ion and/or action selection can be improved in many situations by

 better state representation than those used in the value-based
ecisions of the reward prediction error hypothesis. The above
ase is only an example of the situations in which one should
djust the reward prediction considering the sequence of past
utcomes, rather than just to try and learn the reward expecta-
ion given the momentary external cue; for example, in foraging,
ne should adjust the expectation as one acquires fruit from the
ame tree (Hayden et al., 2011). More generally, we  can consider

 classification of such situations based on what types of infor-
ation may  be useful to be included in the state representation

Table 1). First, configurational information within a momentary
vent is potentially beneficial, compared to cases in which the
vent is encoded plainly without representing the configuration.
ifferent coordinate-specific representations may  lead to different

earning speeds (Hikosaka et al., 1999; Nakahara et al., 2001). Such
ithin-the-moment information could also exist in other factors.

ncoding the relationship among rewards in the state is poten-
ially useful (Acuna and Schrater, 2010; Gershman and Niv, 2010;
reen et al., 2010). The action could also be represented at different

evels, e.g., effector-independent versus effector-specific, and this
ould result in different learning speeds or differently converging

election (Bapi et al., 2006; Gershman et al., 2009; Nakahara et al.,
001; Palminteri et al., 2009). Second, useful information could also
xist in the temporal sequence of these factors. As described above,
A activity or TD error could benefit from encoding information

rom past outcomes into the state (Nakahara et al., 2004). Simi-
arly, encoding the information of a sequence or any combination of
xternal events, actions, and outcomes, in some ways or even par-
ially, can be beneficial for improving reward predictions (Kolling
t al., 2012). Action selection can similarly benefit; an action may  be
elected more accurately by taking into account a series of events
efore or even after the momentary external event (Hikosaka et al.,
999; Nakahara et al., 2001), e.g., sequence-dependent action or
otor control, possibly using different coordinate-specific repre-

entations.

. Dopamine activity for learning the reward structure

We thus suggest that learning the reward structure is indis-
ensable for learning the reward prediction and propose a new
ypothesis, termed the dopamine reward structural learning
ypothesis (Fig. 1B), in which DA activity encodes multiplexed

earning signals. These signals include those for learning the struc-
ure of a reward in internal state representation (“representation
earning”; gray dashed arrow in Fig. 1B), together with signals for
earning to predict the reward (“prediction learning”; black dashed
rrow in Fig. 1B), as signals of an improved reward prediction error
upported by representation learning.

Several findings support the view that a variety of DA activi-
ies is helpful for learning the reward structure. First, DA activity

odulates the cortical re-representation of external events, or re-
apping of auditory cues (Bao et al., 2001), and, more broadly, is

onsidered to play a major role in reward-driven perceptual learn-
ng (Seitz and Dinse, 2007; Zacks et al., 2011). Second, a subset
f DA activity can respond in an excitatory manner to aversive

timuli (CS and/or US) in a similar way to appetitive stimuli, which
s opposite to the presumably inhibitory response posited by the
eward prediction error hypothesis. This observation was  noted
n behaving awake monkeys (Joshua et al., 2009; Matsumoto and
ce Research 74 (2012) 177–183

Hikosaka, 2009) and in rodents (Brischoux et al., 2009; Cohen
et al., 2012). Although further delineation is required (Frank and
Surmeier, 2009; Glimcher, 2011), such DA activity may encode the
saliency signal (Bromberg-Martin et al., 2010b; Matsumoto and
Hikosaka, 2009), which is important for knowing what informa-
tion is crucial, even though it does not code for the “direction” of
importance (i.e., being positive or negative for appetitive and aver-
sive stimuli, respectively, as the TD error does). Third, a subset of
DA activity can also encode signals that alert or initiate a sequence
of external events that are evoked by an initiating external event
or aligned with a self-initiated motor act (Bromberg-Martin et al.,
2010b; Costa, 2011; Redgrave and Gurney, 2006). A group of DA
activities is hypothesized to contain a novelty signal or signals for
exploration (Daw et al., 2005; Kakade and Dayan, 2002). Indeed,
DA activity is also shown to encode “uncertainty” signals (Fiorillo
et al., 2003) or “information-seeking” signals (Bromberg-Martin
and Hikosaka, 2009). These signals can be important for forming
a representation that reflects a useful portion of external events.
Fourth, a subset of DA activity has been shown to add informa-
tion on the action choice or task structure to the reward prediction
error (Morris et al., 2006; Roesch et al., 2007), suggesting that an
interplay between representation learning and prediction learning
is reflected in DA activity. Fifth, even DA tonic activity was found
to be modulated by information on this relationship within a block
of trials and even between blocks (Bromberg-Martin et al., 2010a),
further supporting the reflection of temporal structure information
in DA activity. Thus, these findings indicate that DA activity is not
quite as homogeneous as originally thought or implicitly presumed
in the reward prediction error hypothesis, but it is rather heteroge-
neous. Notably, all of these DA activities described above can assist
representation learning in principle.

Representation learning yields better prediction learning than
that described in the reward prediction error hypothesis. Once rep-
resentation learning enriches the internal state representation with
information on the reward structure, reward prediction and action
selection can be significantly improved, even if they are generated
reactively. The reward prediction error is also naturally improved,
as it uses better reward predictions (Nakahara et al., 2004). Addi-
tionally, the error of the reward structural learning hypothesis can
acquire a proactive nature because it can reflect changes in inter-
nal states, or temporal evolution of internal states, which can be
distinct from the external events (Nakahara et al., 2001). This fea-
ture also applies to reward prediction and action selection. Even
with the same external event, differences in the internal state could
allow those functions to produce different outputs (Doya, 1999;
Nakahara et al., 2001). During time delays with no explicit external
events, the internal state could allow those functions to be evoked
before the actual occurrence of an external event, leading to antic-
ipatory reward prediction and action.

Representation learning is multi-faceted: it works to synthe-
size useful information from different sources in order to support
and improve reward prediction. Sequential information, or infor-
mation on task structure, can, in principle, be utilized in two  ways
(Hikosaka et al., 2006; Nakahara et al., 2004; Ribas-Fernandes
et al., 2011): retrospectively and prospectively with respect to a
momentary external event. In the retrospective scheme, the inter-
nal state should compactly represent information on preceding
event sequences in addition to the event information via learn-
ing. In the prospective scheme, it should include the information
on future event sequences that have not yet occurred. This can
be performed either as the direct learning of future events in
the representation (Dayan, 1993) or as an active process (recur-

sive blue arrow with internal state in Fig. 1B). One mechanism
for the prospective scheme using the active process would be to
use a recall that starts after the event, evoking future likely events
(also actions or outcomes) and imposing their information into the
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Table  1
Structure of rewards, useful to be encoded in state representation.

Class: Configurational Acquiring information latent within a moment into state representation.
Factors

External event—association of a pattern or subset of an external
event with the outcome or appropriate action.

Reward—relationships of reward delivery, or their absence, with
actions or events.

Action—appropriate levels to choose an action, more specific or
general.

Examples
• A specific visual pattern configuration may be a key for reward prediction
(e.g., in board games). Encoding the configuration in the state can drastically
change the learning and execution of prediction and action selection.
• Reward delivery to one choice may imply reward absence to the other (e.g.,
among numbers in a roulette game) or could be independent of the other
(among people). Encoding the dependence or independence in the state may
drastically change learning and execution.
• Action to indicate choosing an option on the “left” can be expressed in
different specific ways (e.g., by hand, eye, or chin), but also in a general form as
being “left.” The appropriate level encoding the action in the state changes the
TD  learning of action selection.

Class:  Sequential Acquiring information over moments into state representation.

Factors
Retrospective—adding information of a sequence of past events,
rewards, and/or actions in a compact form, and typically recent past
ones, to the information of a momentary external event.

Prospective—adding information of likely future events, outcomes,
or actions to the information of a momentary external event.

Examples
• Foraging among fruit trees. One should not keep increasing the expectation
of rewards on a tree as one collects fruit from the tree, but rather decrease the
expectation because obtaining more fruit from the tree means less remaining
fruits. TD learning with momentary external events (e.g., looking at the tree)
as  the states cannot immediately take account of such a reward structure, as
its  reward prediction is learned to be an average (discounted) value of fruit
with the state.
• Moving to where a puck would go. In ice hockey, we should not just go to
where a puck currently is, but rather move, considering where a puck is likely
to  be. By contrast, TD learning with momentary external events as states can
learn reward prediction and action selection only reactively with respect to
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epresentation. Other neural functions that are debated in ref-
rence to the original setting of the reward prediction error
ypothesis are mostly related to this type of recall because those

unctions are defined to invoke additional processes after the
vent, beyond the default value-based decision-making process.
or example, active recall after the event has also been applied
o extract configurational information as a complementary pro-
ess to the default process (Courville et al., 2006; Daw et al., 2006;
ershman and Niv, 2010; Green et al., 2010; Rao, 2010; Redish et al.,
007) (see below). Another mechanism for the prospective scheme
ould be anticipatory recall before the event to encode future likely

vents (along with actions or outcomes) in the representation. This
echanism would make information on future events available

efore any event starts, therefore rendering value-based decisions
ery flexible.

While DA activity would exert effects on representation learn-
ng primarily through DA modulation of synaptic plasticity (gray
ashed arrow in Fig. 1B), it may, additionally, directly affect the

nternal state representation with its effect on membrane excitabil-
ty (for which the gray dashed arrow in Fig. 1B could additionally be
onsidered to represent direct modulation). For example, DA activ-
ty may  change or gate that which is maintained as the internal
tate, e.g., in working memory or sustained neural activity (Gruber
t al., 2006; Montague et al., 2004; Todd et al., 2009). In concert
ith the prospective mechanism and the anticipatory recall dis-

ussed above, the immediate effect of DA activity on the internal
tates may  provide an additional mechanism to adaptively select
he internal states. Presumably, the DA-mediated synaptic learn-
ng mechanism is better equipped to extract useful information
y superimposing reward-related events over a long time, while
he DA-mediated immediate mechanism is equipped to adjust to
hanges in the environment over a short time. In a broader per-
pective, the immediate mechanism is also a part of representation
earning, i.e., setting an improved state for reward prediction and

ction selection.

Our dopamine reward structural learning hypothesis provides
mportant insight into a dichotomy of decision making: the so-
alled model-free and model-based RL mechanisms (Acuna and
the events.

Schrater, 2010; Balleine et al., 2008; Daw et al., 2011, 2005; Dayan
and Niv, 2008; Doya, 2007; Funamizu et al., 2012; Gläscher et al.,
2010; Suzuki et al., 2012; Wunderlich et al., 2012). In these stud-
ies, both mechanisms use the external events as the state in the
same way that is assumed for the reward prediction error hypoth-
esis. However, they differ in what they are designed to learn and
how they are designed to makes decisions. The model-free RL is the
default process described earlier. It learns values that are directly
associated with states (which are mediated by DA activity) and then
makes decisions by comparing the values. On the other hand, the
model-based RL directly learns the transitions across states and the
ways in which the reward is given in the transition, and it makes
decisions by simulating future changes in the environment and
comparing the simulated values. Thus, the model-free RL is more
economical in computational labor, but it is less flexible (or ‘habit-
ual’), whereas the model-based RL requires heavier computations,
but it is more flexible. By contrast, our hypothesis suggests that
internal states, acquired by representation learning, would provide
a better default process, and this default process can work as an
improved model-free RL mechanism. Compared with the ‘origi-
nal’ model-free RL, the new model-free RL may  be more optimal,
compactly representing useful information beyond the immediate
past event and yielding to better reward predictions, for example. It
may  also be more flexible, possibly combined with the prospective
mechanism or anticipatory recall. On the other hand, it involves
heavier learning, which is learning the internal state. Compared
with the ‘original’ model-based RL, the new model-free RL can
work faster and more preemptively in decision making and may  be
potentially more economical. However, it may  not achieve the same
ultimate degree of optimality and flexibility as the original model-
based RL could because the original model-based RL involves more
exhaustive learning and “recall after the event” computations for
making decisions. Thus, the new model-free RL may  account for
some behaviors or functions that have been ascribed to the orig-

inal model-based RL. More importantly, our reward structural
learning indicates a potentially more ideal mechanism for value-
based decision making, balancing among economy, optimality and
flexibility.
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. Future directions

The dopamine reward structural learning hypothesis raises a
umber of questions that need to be addressed. For example,
hat are the computational processes that underlie the learning

f reward structures in internal state representations, or repre-
entation learning? As noted above, several experimental studies
ndicate that different forms of reward structures may  be learned
n internal representation during different tasks. A pressing com-
utational question seeks to find the relationship between unified
epresentation learning and DA activity, or the form or aspect of
epresentation learning to which DA activity contributes. Studies
f reward-driven perceptual learning address interactions between
epresentation learning and prediction learning, and their progress
ill provide insights (Nomoto et al., 2010; Reed et al., 2011; Seitz

nd Dinse, 2007). Progress related to learning the reward struc-
ure in representation has been ongoing in other fields apart from
euroscience, such as machine learning, by using predictive states,
xtracting or approximating features that represent states, or using
ther types of time traces (Daw et al., 2006; Gershman et al., 2012;
udvig et al., 2008; Nakahara and Kaveri, 2010; Parr et al., 2007;
utton et al., 2009, 2011). Interestingly, they suggest different ways
o improve state representation, and future research can benefit
rom their use (Wan  et al., 2011).

Which neurophysiological and behavioral experiments can
llow us to further examine representation learning of reward
tructure? A useful experiment is to systematically probe the spe-
ific information that is useful for value-based decisions, hidden
ithin a moment or over moments, that can be reflected in DA

esponses, and whether such DA responses change through the
xperience of trials, concordantly with behavioral choices. For
xample, few studies have systematically addressed the use of
xtracting and learning temporal structure information for value-
ased decision making. To dissect the roles of DA activity or activity

n other related areas in learning, it is desirable to be able to inac-
ivate DA neurons or the activity of other neurons in a reversible

anner.
Which neural circuits underlie the concurrent processes of

epresentation and prediction learning? Insights may  be gained
y considering their relationships for computations and circuits
ogether. First, the areas that generate internal representation
hould be located upstream from those that generate reward
rediction and action selection (Fig. 1B). A clear possibility is

 combination of cortical and basal ganglia areas that receive
eavy DA innervation; for example, the prefrontal cortical areas
ay  act primarily for learning the reward structure in internal

tates (McDannald et al., 2011, 2012; Rushworth et al., 2012),
hereas the striatum may  act primarily for learning the reward
rediction (and action selection). Second, representation learn-

ng would require more detailed learning signals than prediction
earning, so that areas receiving heterogeneous DA signals, such
s salient signals, are more likely to be involved in representa-
ion learning. Areas that receive projections from DA neurons in
he dorsolateral SNc, in which DA neurons that encode salient sig-
als tend to be located, include the dorsolateral prefrontal cortex,
orsal striatum, and nucleus accumbens (core) (Bromberg-Martin
t al., 2010b; Lammel et al., 2008; Matsumoto and Hikosaka,
009). Areas that have neural activity that is akin to salient sig-
als may  also be a part of the circuit for representation learning,
uch as the basolateral amygdala and anterior cingulate cortex
Hayden et al., 2010; Roesch et al., 2010). In summary, syn-
hesizing the original success of the reward prediction error

ypothesis and the discrepancies found in recent experimental evi-
ence, the reward structural learning hypothesis can help to guide
uture research for understanding neural value-based decision

aking.
ce Research 74 (2012) 177–183
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